Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Yi Yi, Yi-Zhi Li and Li-Min Zheng*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.103$
Data-to-parameter ratio $=12.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

[Hydroxy(4-pyridyl)methyl]phosphonic acid monohydrate

The title compound, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{NP} \cdot \mathrm{H}_{2} \mathrm{O}$, contains one phosphonate group and one pyridyl ring connected by a $\mathrm{CH}(\mathrm{OH})$ group. The pyridyl N atom and one of the three phosphonate O atoms are protonated. Extensive hydrogen-bonding interactions, as well as $\pi-\pi$-stacking interactions, are found between the molecules, thus generating a three-dimensional supramolecular network structure.

Comment

Metal phosphonates are organic-inorganic hybrid materials that can be designed to possess specific properties; these include ion exchangers, sensors, non-linear optical materials and catalysts (Clearfield, 1998). A number of functional phosphonic acids have been employed to build up novel structures, ranging from one-dimensional chains, through twodimensional layers to three-dimensional pillared layers or open frameworks. As a potential multidentate ligand, [hydroxy(4-pyridyl)methyl]phosphonic acid is capable of forming extended structures with metal ions. During our efforts to synthesize a cobalt compound by direct reaction of the acid with CoCl_{2} under hydrothermal conditions, however, good quality single crystals of the unreacted acid were obtained as the monohydrate, (I).

(I)

Fig. 1 shows that the phosphonate group and the pyridyl ring are separated by a $\mathrm{CH}(\mathrm{OH})$ group. Consequently, a chiral center is created at atom C6. Among the three phosphonate O atoms, only O 3 is protonated; hence the $\mathrm{P}-\mathrm{O} 3$ distance is 1.5736 (19) \AA, much longer than the other two $\mathrm{P}-\mathrm{O}$ distances (Table 1). The $\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances are normal. The CPO_{3} tetrahedron is slightly distorted, with the $\mathrm{O}-\mathrm{P}-\mathrm{O}(\mathrm{C})$ angles ranging from 105.61 (12) to 117.98 (11) ${ }^{\circ}$. The pyridyl N atom is also protonated in order to balance the overall charge. The neighboring molecules are connected by the hydrogen bonds between the phosphonate O atoms and the hydroxyl O atom, forming an infinite chain along the 2_{1} screw axis (Table 2). These chains are held together through hydrogen bonds between $\mathrm{O} 1 W$ and the phosphonate O atoms (O1 and O 2), forming a chiral layer. $\pi-\pi$-Stacking interactions are also found within the layer, with a centroid-to-centroid distance of 3.61 (2) \AA for adjacent pyridyl rings. Neighboring layers are

Received 1 July 2002
Accepted 3 July 2002
Online 12 July 2002

The molecular structure of (I), shown with 50% probability displacement ellipsoids.
situated about inversion centers and are linked by hydrogen bonds between atoms $\mathrm{O} 1 W$ and N 1 , thus leading to a racemic three-dimensional supramolecular network (Fig. 2).

Experimental

Colorless single crystals of (I) were obtained by hydrothermal treatment of a mixture of [hydroxy(4-pyridyl)methyl]phosphonic acid $(0.0986 \mathrm{~g}, \quad 0.5 \mathrm{mmol} ; \quad$ Bogdan, 1996$), \quad \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \quad(0.0623 \mathrm{~g}$, 0.25 mmol) and $8 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ (1:3) at 413 K for 2 d , then cooling slowly to room temperature.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}_{4} \mathrm{P} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=207.12$
Monoclinic, $P 2_{1} / n$
$a=6.486$ (1) \AA 。
$b=15.464$ (3) \AA
$c=8.457$ (2) A
$\beta=103.91$ (1) ${ }^{\circ}$
$V=823.3(3) \AA^{3}$
$Z=4$
$D_{x}=1.671 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1197 reflections
$\theta=2.6-23.9^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Column, colorless
$0.30 \times 0.25 \times 0.10 \mathrm{~mm}$

Data collection

Figure 2
The packing of (I), viewed along the a axis.

Bruker SMART APEX CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.906, T_{\max }=0.966$
4405 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.103$
$S=0.94$
1613 reflections
133 parameters

1613 independent reflections
1189 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-8 \rightarrow 7$
$k=0 \rightarrow 19$
$l=0 \rightarrow 10$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0566 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.50 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{P} 1-\mathrm{O} 1$	$1.4910(18)$	$\mathrm{P} 1-\mathrm{O} 3$	$1.5736(19)$
$\mathrm{P} 1-\mathrm{O} 2$	$1.4938(17)$	$\mathrm{P} 1-\mathrm{C} 6$	$1.843(3)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$	$117.98(11)$	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{C} 6$	$105.61(12)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$	$109.43(10)$	$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 3$	$108.7(2)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$	$107.30(11)$	$\mathrm{O} 4-\mathrm{C} 6-\mathrm{P} 1$	$111.21(18)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 6$	$108.9(11)$	$\mathrm{C} 3-\mathrm{C} 6-\mathrm{P} 1$	$109.83(17)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{C} 6$	$107.04(11)$		

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2{ }^{\text {i }}$	0.77 (3)	1.85 (3)	2.617 (2)	174 (3)
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 1^{\text {ii }}$	0.95 (3)	1.76 (3)	2.697 (3)	169 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.92 (3)	1.79 (3)	2.705 (3)	173 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 1^{\text {iv }}$	0.77 (3)	1.97 (3)	2.727 (3)	167 (4)
N1-H1N \cdots O1W	0.93 (3)	1.75 (3)	2.669 (3)	170 (3)

Symmetry codes: (i) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$; (ii) $x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iv) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$.

The positions of all H atoms of the pyridyl ring, except for that on N , were fixed geometrically and distances to H atoms were set by the refinement program ($\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$). The other H atoms were found from difference density maps. The bond distances were $\mathrm{O}-\mathrm{H}$ $=0.77$ (3) -0.95 (3) \AA and $\mathrm{N}-\mathrm{H}=0.93$ (3) \AA.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was funded by the National Natural Science Foundation of China (Nos. 29901003, 29823001 and 20131020) and the Analysis Center of Nanjing University. The authors thank Mr Yong-Jiang Liu for the data collection.

References

Bogdan, B. (1996). Tetrahedron, 38, 12483-12494.
Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Clearfield, A. (1998). Progress in Inorganic Chemistry, edited by K. D. Karlin, Vol. 47, pp. 371-510. New York: John Wiley and Sons Inc.
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.

