organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Yi Yi, Yi-Zhi Li and Li-Min Zheng*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.043 wR factor = 0.103 Data-to-parameter ratio = 12.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[Hydroxy(4-pyridyl)methyl]phosphonic acid monohydrate

The title compound, $C_6H_8O_4NP\cdot H_2O$, contains one phosphonate group and one pyridyl ring connected by a CH(OH) group. The pyridyl N atom and one of the three phosphonate O atoms are protonated. Extensive hydrogen-bonding interactions, as well as π - π -stacking interactions, are found between the molecules, thus generating a three-dimensional supramolecular network structure. Received 1 July 2002 Accepted 3 July 2002 Online 12 July 2002

Comment

Metal phosphonates are organic–inorganic hybrid materials that can be designed to possess specific properties; these include ion exchangers, sensors, non-linear optical materials and catalysts (Clearfield, 1998). A number of functional phosphonic acids have been employed to build up novel structures, ranging from one-dimensional chains, through twodimensional layers to three-dimensional pillared layers or open frameworks. As a potential multidentate ligand, [hydroxy(4-pyridyl)methyl]phosphonic acid is capable of forming extended structures with metal ions. During our efforts to synthesize a cobalt compound by direct reaction of the acid with CoCl₂ under hydrothermal conditions, however, good quality single crystals of the unreacted acid were obtained as the monohydrate, (I).

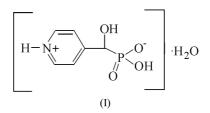
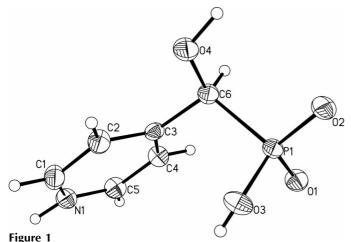



Fig. 1 shows that the phosphonate group and the pyridyl ring are separated by a CH(OH) group. Consequently, a chiral center is created at atom C6. Among the three phosphonate O atoms, only O3 is protonated; hence the P-O3 distance is 1.5736 (19) Å, much longer than the other two P-O distances (Table 1). The P-C and C-O distances are normal. The CPO_3 tetrahedron is slightly distorted, with the O-P-O(C)angles ranging from 105.61 (12) to 117.98 (11)°. The pyridyl N atom is also protonated in order to balance the overall charge. The neighboring molecules are connected by the hydrogen bonds between the phosphonate O atoms and the hydroxyl O atom, forming an infinite chain along the 21 screw axis (Table 2). These chains are held together through hydrogen bonds between O1W and the phosphonate O atoms (O1 and O2), forming a chiral layer. π - π -Stacking interactions are also found within the layer, with a centroid-to-centroid distance of 3.61 (2) Å for adjacent pyridyl rings. Neighboring layers are

© 2002 International Union of Crystallography

Printed in Great Britain - all rights reserved

The molecular structure of (I), shown with 50% probability displacement ellipsoids.

situated about inversion centers and are linked by hydrogen bonds between atoms O1W and N1, thus leading to a racemic three-dimensional supramolecular network (Fig. 2).

Experimental

Colorless single crystals of (I) were obtained by hydrothermal treatment of a mixture of [hydroxy(4-pyridyl)methyl]phosphonic acid (0.0986 g, 0.5 mmol; Bogdan, 1996), CoCl₂·6H₂O (0.0623 g, 0.25 mmol) and 8 ml H₂O-EtOH (1:3) at 413 K for 2 d, then cooling slowly to room temperature.

Crystal data

C₆H₈NO₄P·H₂O $M_r = 207.12$ Monoclinic, $P2_1/n$ a = 6.486(1) Åb = 15.464 (3) Å c = 8.457 (2) Å $\beta = 103.91 (1)^{\circ}$ V = 823.3 (3) Å³ Z = 4

 $D_x = 1.671 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 1197 reflections $\theta = 2.6 - 23.9^{\circ}$ $\mu = 0.32~\mathrm{mm}^{-1}$ T = 293 (2) KColumn, colorless $0.30 \times 0.25 \times 0.10 \text{ mm}$

Data collection

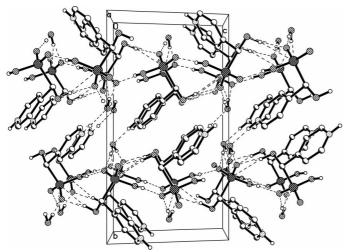


Figure 2 The packing of (I), viewed along the a axis.

Bruker SMART APEX CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1997) $T_{\min} = 0.906, T_{\max} = 0.966$ 4405 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.103$ S = 0.941613 reflections 133 parameters

1613 independent reflections 1189 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.056$ $\theta_{\text{max}} = 26.0^{\circ}$ $h = -8 \rightarrow 7$ $k = 0 \rightarrow 19$ $l = 0 \rightarrow 10$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0566P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \mathring{A}}^{-3}$ $\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

1.4910 (18)	P1-O3	1.5736 (19)
1.4938 (17)	P1-C6	1.843 (3)
117.98 (11)	O3-P1-C6	105.61 (12)
109.43 (10)	O4-C6-C3	108.7 (2)
107.30 (11)	O4-C6-P1	111.21 (18)
108.79 (11)	C3-C6-P1	109.83 (17)
107.04 (11)		
	1.4938 (17) 117.98 (11) 109.43 (10) 107.30 (11) 108.79 (11)	1.4938(17) $P1-C6$ $117.98(11)$ $O3-P1-C6$ $109.43(10)$ $O4-C6-C3$ $107.30(11)$ $O4-C6-P1$ $108.79(11)$ $C3-C6-P1$

Table 2

Hydrogen-	bonding	geometry	(A, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H3···O2 ⁱ	0.77 (3)	1.85 (3)	2.617 (2)	174 (3)
$O4-H4\cdots O1^{ii}$	0.95 (3)	1.76 (3)	2.697 (3)	169 (3)
$O1W-H1WA\cdots O2^{iii}$	0.92 (3)	1.79 (3)	2.705 (3)	173 (3)
$O1W-H1WB\cdots O1^{iv}$	0.77(3)	1.97 (3)	2.727 (3)	167 (4)
$N1-H1N\cdotsO1W$	0.93 (3)	1.75 (3)	2.669 (3)	170 (3)

Symmetry codes: (i) $\frac{1}{2} + x$, $\frac{3}{2} - y$, $\frac{1}{2} + z$; (ii) $x - \frac{1}{2}$, $\frac{3}{2} - y$, $z - \frac{1}{2}$; (iii) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{3}{2} - z$; (iv) $-x, y - \frac{1}{2}, \frac{3}{2} - z.$

The positions of all H atoms of the pyridyl ring, except for that on N, were fixed geometrically and distances to H atoms were set by the refinement program (C–H = 0.93-0.98 Å). The other H atoms were found from difference density maps. The bond distances were O-H = 0.77 (3) - 0.95 (3) Å and N - H = 0.93 (3) Å.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was funded by the National Natural Science Foundation of China (Nos. 29901003, 29823001 and 20131020) and the Analysis Center of Nanjing University. The authors thank Mr Yong-Jiang Liu for the data collection.

References

Bogdan, B. (1996). Tetrahedron. 38, 12483-12494.

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Clearfield, A. (1998). Progress in Inorganic Chemistry, edited by K. D. Karlin, Vol. 47, pp. 371-510. New York: John Wiley and Sons Inc.

Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.